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Abstract
A fully consistent realization of the quantum operators corresponding to the
canonically conjugate phase and number variables is proposed, resorting to the
κ = 1

2 positive discrete series of the irreducible unitary representation of
the Lie algebra su(1, 1) of the double covering group of SO↑(1, 2). The
realization holds in subspace F\|0〉, the system Fock space minus the vacuum
state. A possible way to extend it to the full space of states based on recourse
to a dilated extension of Hilbert space is discussed.

PACS numbers: 02.20.Sv, 03.65.Vf

The original representation of quantum mechanics of Bohr and Sommerfeld implicitly relies on
the notion of integrable dynamical system, the correspondence principle referring to classical
canonically conjugate action-angle variables. The naturally ensuing question concerning
the existence of a quantum operator related to the classical observable ‘phase’, that would
put phase and action on the same footing as position and momentum of the more widely
adopted Schrödinger and Heisenberg formulations, was posed by London [1] as early as
1926. However the practical and operational relevance of a consistent quantum mechanical
description of phase emerged only much later, with the onset of quantum optics [2, 3]. Here,
in particular, the notion as well as the experimental realization of squeezed states of light—
allowing us to perform high accuracy measurements of the interferometric phase—made the
difference, promising to open the way towards the capability of engineering arbitrary states of
the radiation field [4]. The concept of phase operator has also been crucial to the intriguing
operational approach proposed by Noh, Fougères and Mandel in a series of papers between
1991 and 1993 (essentially summarized in [3]) and thoroughly discussed in [5], where an
interesting historical view of the problem is presented.
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Nowadays the question of consistently representing field phase and intensity operators
has become crucial not only for quantum optics but also for the physics of mesoscopic
quantum systems, such as, for instance, superconductive Josephson junctions [6, 7], and
weakly interacting Bose–Einstein condensates with Josephson coupling [8, 9], of wide
interest for quantum information manipulation [10–13]. The problem of how to describe the
canonically conjugate phase φ̂ and number n̂ operators ([φ̂, n̂] = i) as self-adjoint operators in
a formalism consistent with the representation of amplitudes through creation and annihilation
operators in the Hilbert (e.g. Fock) space F of states of the corresponding physical system1

remains however essentially unsolved. The several attempts made over the years [15–24] have
clarified a number of interesting features and have proposed practical approaches to deal with
various obstructions, but none has fully overcome the difficulties, inherent essentially to the
inconsistency related with the definition of the phase operator (whose eigenvalues provide the
phase difference with respect to an arbitrary reference value φ0) in the state where the number
eigenvalue is zero (a difficulty which has a classical counterpart [25]).

The correspondence principle of quantum mechanics appears to suggest that the customary
annihilation and creation operators a, a† (related to the complex classical amplitude of
harmonic oscillations) adopted, e.g., in the description of the harmonic oscillator, which
together with the number n̂ and identity operator I, generate the Weyl–Heisenberg algebra
h(1) ([a, a†] = I, [a, n̂] = a, [a†, n̂] = −a†, [•, I] = 0), may be represented in polar form
(phase-modulus decomposition) as

a
.= ê

√
n̂, (1)

ê defining the quantum phase operator. However, it is not possible to derive from the above
ansatz a fully satisfactory phase observable: indeed, the solution of (1) ê = ∑∞

n=0 |n〉〈n + 1|,
where n̂|n〉 = n|n〉, n � 0, turns out to be non-unitary;

êê† = I, ê†ê = I − |0〉〈0|. (2)

The approach to the problem most adopted in the applications is that due to Pegg
and Barnett [22], who propose to resort to a finite-dimensional [14] Hilbert space of states
HN

.= span{|n〉|n = 0, . . . , N − 1} (N = dim(HN)) and to define in it a self-adjoint phase
operator φ̂N by constructing first the set of ‘phase states’

|φ�〉 .= N− 1
2

N−1∑
n=0

exp(inφ�)|n〉, φ�
.= φ0 + 2π

�

N
, (3)

for � ∈ ZN , and setting then φ̂N

.= ∑N−1
�=0 φ�|φ�〉〈φ�|. In the occupation number basis φ̂N has

matrix elements

〈�|φ̂N |�〉 = φ0 + π(N − 1)N−1 and, for m �= �,

〈m|φ̂N |�〉 = 2π2

N

∣∣∣sin
( π

N
(m − �)

)∣∣∣−1
ei(m−�)(φ0+ 1

N
π).

The problem here is that the spectral resolution of the discrete operator φ̂N does not provide
[26] a measure converging either to a projection valued measure or to a probability operator
measure in the limit N → ∞ (i.e. in the full Hilbert–Fock space F).

The most promising approaches to circumvent such difficulties came from the
identification of the algebraic structure underlying the problem. Reference [27] resorts first to
the polar decomposition of step operators in u(2) ≡ u(1) ⊗ su(2) and then to its contraction

1 It is known that the commutation relation [φ̂, n̂] = i can be implemented as an operator identity only on a dense
set of the Hilbert space. See [14].
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limit. Being su(2) compact, the closure property in this way is lost. At this point the
idea of using su(1, 1), a non-compact counterpart of su(2), was introduced [21, 28], based
on relative number variables, well-defined (e.g. in the frame of thermo-field dynamics) in
a two-mode representation of su(1, 1). The crucial notion furnished by these approaches
was just the realization of the role of such algebra. This notion was recently revived.
Observing that in a canonical quantization scheme the self-adjoint Lie algebra generators
K1,K2,K3 of the group SO↑(1, 2) correspond to the classical polar coordinates variables
in R2,Rx

.= r cos φ,Ry
.= r sin φ and Rz

.= r , respectively, whose Poisson brackets
({Rx,Ry}PB = Rz, {Rz,Rx}PB = −Ry , {Rz,Ry}PB = Rx) satisfy the same algebra,
Kastrup [29] proposed a group theoretical approach to the problem resorting to the irreducible
unitary representations of the positive series.

The generators K1,K2,K3 have commutation relations [K1,K2] = −iK3, [K2,K3] =
iK1, [K3,K1] = iK2, or, introducing the skew raising and lowering operators K±

.= K1 ± iK2

acting as ladder operators on the eigenvectors of the Cartan operator K3, generator of the
compact subgroup SO(2) of SO↑(1, 2), [K+,K−] = −2K3, [K3,K±] = ±K±.

The positive discrete series representation of the algebra su(1, 1) of the double covering of
SO↑(1, 2) is characterized [30] by the existence of an highest weight vector |κ,�〉 (invariant,
in representation space, under the action of the maximal compact sub-group K ∼ U(1) of
SU(1, 1)),2 annihilated by the lowering operator K−. This means that K−|κ,�〉 is not a ket
in the representation Hilbert space. Upon identifying |κ,�〉 with the eigenvector |κ, 0〉 of K3

the commutation relations give K−|κ, 0〉 ≡ 0 (see below). The real number κ , characterizing
the representation, assumes values κ = 1

2 , 1, 3
2 , 2, . . . , and is such that the Casimir operator

C2 = 1
2 {K+,K−} − K2

3 has in that representation eigenvalue κ(1 − κ). The positive discrete

series irreducible unitary representation D(+)
κ , with K

†
− ≡ K+, is spanned by the complete

orthonormal set {|κ, n〉|n ∈ N} of eigenstates of K3,K3|κ, n〉 = (n + κ)|κ, n〉. The ladder
operators K−,K+ satisfy the equations

K−|κ, n〉 = ω−1
n

√
n(n + 2κ − 1)|κ, n − 1〉,

K+|κ, n〉 = ωn+1

√
(n + 1)(n + 2κ)|κ, n + 1〉,

(4)

where ωn = eiθn is a phase. With no loss of generality θn can be assumed independent on n
(ωn = eiθ .= ω,∀n ∈ N). Notice that equations (4) imply

|κ, n〉 = ω−n 1

n!

(
n + 2κ − 1

2κ − 1

)− 1
2

Kn
+ |κ, 0〉.

D(+)
κ has an interesting realization in h(1), the so called Holstein–Primakoff [31]

representation: in it the basis vector |κ, n〉, eigenvector of K3, is identified with the eigenvector
|n〉 of n̂ in F, namely K3

.= n̂ + κ , then, over F,

K+ ≡ ω
√

n̂ + 2κ − 1a†, K− ≡ ω−1a
√

n̂ + 2κ − 1.

For κ = 1
2 , in this realization D(+)

1
2

is generated by

K+ ≡ ω
√

n̂a†, K− ≡ ω−1a
√

n̂, K3 ≡ n̂ + 1
2 .

namely
∣∣ 1

2 , n
〉 = ω−n 1

n!K
n
+

∣∣ 1
2 , 0

〉
.

There is a connection between the latter representation of su(1, 1) and the uniform
expansion which (3) reduces to for � = 0, which is at the basis of the lack of convergence
mentioned above: indeed a uniform superposition of occupation number eigenstates in F can

2 It is worth recalling that besides the discrete series, one of the principal continuous series (class I) and the
supplementary series have this property.
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be straightforwardly constructed in D(+)
1
2

, in view of the form of
∣∣ 1

2 , n
〉
, as |ω〉 .= eωK+

∣∣ 1
2 , 0

〉 =∑∞
n=0

∣∣ 1
2 , n

〉
, a coherent state of su(1, 1) which is manifestly not normalizable.

For analogy with the classical case (cos φ = r−1Rx, sin φ = r−1Ry) in [29] the definition
is suggested:

ĉos φ ≡ 1
2

{
K−1

3 ,K1
}
, ŝin φ ≡ 1

2

{
K−1

3 ,K2
}
. (5)

In the discrete positive series irreducible unitary representation of su(1, 1), this assumption is
analytic for generic κ , because K−1

3 is well-defined in view of the eigenvalue equation of K3,

but it has the drawback that ĉos φ
2

+ ŝin φ
2

and [ĉos φ, ŝin φ], even though both diagonal, are
not equal—respectively—to I and 0, as they should be. Indeed, they do satisfy such conditions
only for large n:

(ĉos φ
2

+ ŝin φ
2
)|κ, n〉 = 1

8

[(
f

(κ)
n+1

)2
+

(
f (κ)

n

)2
]
|κ, n〉,

[ĉos φ, ŝin φ]|κ, n〉 = 1

8i

[(
f

(κ)
n+1

)2
+

(
f (κ)

n

)2
]
|κ, n〉,

where

f (κ)
n

.= [n(n + 2κ − 1)]
1
2

(
1

n + κ
+

1

n + κ − 1

)
−→
n→∞ 2.

In this note we suggest that the scheme (5) can be generalized so as to exhibit almost everywhere
in F (i.e., with the exception of point |0〉) all the required features for effective phase-angle
quantum variables.

The basic step is the generalization of equations (5) (see also [32, 33]):

ĉos φ
.= {F(K3),K1}, ŝin φ

.= {F(K3),K2}, (6)

where F is a function—whose existence will be proved in the following—meromorphic in
the D(+)

1
2

-representation, of the form F(K3) = n̂−1(I − |0〉〈0|) + �(n̂), where �(n̂), whose

eigenvalues in F will be written in terms of digamma functions, is such that �(n̂)|0〉 = 0. Such
choice guarantees that the commutation relations [n̂, ĉos φ] = −i ŝin φ, [n̂, ŝin φ] = i ĉos φ,
are satisfied

(
n̂ = K3 − 1

2

)
and F may be selected so as to ensure that the two other conditions

are satisfied almost everywhere (i.e. in F\|0〉). The construction of F in D(+)
1
2

in such a way

that:

(i) ĉos φ
2

+ ŝin φ
2 = I, (ii) [ĉos φ, ŝin φ] = 0, (7)

proceeds as follows. One observes first that, upon setting c ≡ ĉos φ, s ≡ ŝin φ and
Ln

.= 1
2n

(
F

(
n − 1

2

)
+ F

(
n + 1

2

))
,

c|n〉 = ωLn+1|n + 1〉 + ω−1Ln|n − 1〉, s|n〉 = −iωLn+1|n + 1〉 + iω−1Ln|n − 1〉,
where |n〉 ≡ ∣∣ 1

2 , n
〉
. Equivalently,

e±
.= (c ± is) ≡ ê±iφ, e± = {F(K3),K±},

satisfy

e+|n〉 = 2ωLn+1|n + 1〉, e−|n〉 = 2ω−1Ln|n − 1〉.
From these, for

O .= 1
4ξ [(1 + η)c + i(1 − η)s][(1 + ξη)c − i(1 − ξη)s],
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where ξ, η ∈ {±1}, (O1,1 ≡ c2,O1,−1 ≡ s2,O−1,1 ≡ ics,O−1,−1 ≡ −isc), one finds

Oξ,η|n〉 = [
L2

n+1 + ξL2
n

]|n〉 + η(ω2Ln+1Ln+2|n + 2〉 + ξω−2Ln−1Ln|n − 2〉),
whence (c2 + s2)|n〉 = 2

[
L2

n + L2
n+1

]|n〉, and [c, s]|n〉 = 2i
[
L2

n+1 − L2
n

]|n〉. The pursued
conditions (7) amount then to requiring that Ln+1 = Ln = 1

2 , for all n � 1, namely that the
following system of recursion equations is satisfied by F(n)

.= F
(
n + 1

2

)
:

(n + 1)F (n + 1) − nF(n − 1) + F(n) = 0, (8)

F(n) = 1

n
− F(n − 1). (9)

Equations (9) and (8) are mutually consistent; thus we only need to consider, e.g., (8).
Equation (9) will simply be used to properly continue the result to n = 0. For n � 1, the
recursion equation (8) can be dealt with by the generating function method. One defines first

f (z)
.=

∞∑
n=1

F(n)zn, (10)

where z is an undeterminate. Multiplying equation (8) by zn and summing for n ranging from
1 to ∞, in view of definition (10), one obtains for f the differential equation

(1 − z2)
df

dz
+ (1 − z)f (z) − F(1) = 0. (11)

We select F(1) = 1, so that, as only one integration constant is required in view of (9), we
may assume F(0) ≡ f (0) = 0. The solution of (11) is then

f (z) = −(1 + z)−1 ln(1 − z). (12)

Expanding (12) as a power series in z one eventually finds

F(n) = (−)n
n∑

�=1

(−)�

�
, ∀n � 1. (13)

The sum in (13) can be split into even and odd values of �, and has different expressions
depending on whether n is itself even or odd:

F(2m) = 1

2

m∑
r=1

1

r
−

m−1∑
r=0

1

2r + 1
, m � 1,

F (2m + 1) = −1

2

m∑
r=1

1

r
+

m∑
r=0

1

2r + 1
, m � 0.

Recalling now that [34]
∑k

�=1
1
�

= γ + ψ(k + 1), and
∑k−1

�=0
1

2�+1 = 1
2

(
γ + 2 ln 2 + ψ

(
k + 1

2

))
,

where γ is Euler’s constant and ψ(z) the Digamma function, and that 1
2ψ

(
k + 1

2

) =
ψ(2k) − 1

2ψ(k) − ln 2, one obtains—including as well the condition F(0) = 0, and denoting
by [[x]] the largest integer � x—

F(n) = (1 − δn,0)
1

n
+ �(n),

�(n) = (−)n
[
ψ

([[
1

2
(n + 1)

]])
− ψ(n)

]
.

(14)
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We may then conclude that the function entering definition (6) F(K3) ≡ F(n̂), does exist
and is well defined as operator3 over the Fock space F for n � 1. With this choice, indeed,

e+|n〉 = ω|n + 1〉, n � 0; e−|n〉 = ω−1|n − 1〉, n � 1.

Still, what happens in state |0〉 has some ambiguity and subtlety that requires further
discussion. Explicit calculation using the above scheme shows that while the conditions (7)
hold for all |n〉 with n � 1, and in state |n〉, for which operator n̂ is sharp, give rise to the
‘semi-classical’ uncertainty condition �n(c)�n(s) = 1

2 , namely the minimum variance for s

and c consistent with c2 + s2 = I, for state |0〉 one has (c2 + s2)|0〉 = 1
2 |0〉, [c, s]|0〉 = − 1

2 i|0〉
and e−|0〉 = 0, as well as the ‘sub-minimal’ uncertainties �0(c) = �0(s) = 1

2 , suggesting
that c and s are still not uncorrelated quantum observables there. This is the ‘fossil remain’ in
our representation of the pathology encountered in all other representations and the price
paid for making independent on n the eigenvalues of (c2 + s2) and [c, s]. Indeed, the
action of e− is badly defined in state |0〉: one finds e+e− = I − |0〉〈0|, e−e+ = I, namely
[e−, e+] = |0〉〈0|, the same disease as in (2), even though within a much more robust structure,
where sine and cosine operators satisfy the desired conditions c2 + s2 = I, [c, s] = 0 in
all of F\|0〉. In view of the commutation relation [φ̂, n̂] = i, of course in a state which
is sharp for n̂, the value of φ̂ should be fully undeterminate; yet the uncertainty product
�0(c)�0(s) = 1

4 shows that its sine and cosine have mutual uncertainty when n̂ has eigenvalue
0: this means that even in the quantum case the phase of the origin is undefined [25]
(what is the longitude of the north pole?). A suggestive hint comes from the property
that in our reference algebra the defining relations no longer contract in state |0〉 to those
of E(2)[Kα → K̄α, α = +,−, 3, [K̄3, K̄±] = ±K̄±, [K̄+, K̄−] = 0], as they do instead in
|n〉; n � 1.

There is however yet another new feature in the present approach. In the form (14),
F(n) can be analytically continued to n = −1, where, in view of the identities [34]
ψ(z + 1) = ψ(z) + 1

z
, ψ(1 − z) = ψ(z) + π cot(πz), one finds F(−1) = 0. Notice that

this is not consistent with (9), which however obviously does not hold for n = 0. For n = 0 a
more plausible solution to (9) would instead demand

lim
n→0

nF(n − 1) = 1. (15)

This leads to an intriguing possible way out of the difficulty, which consists of replacing �(n)

in (14) by

�(n) = �(n) + (−)n
∞∑

k=1

δn,−kζ(k), (16)

where ζ(1) = −ω−1ψ(−1) and, ∀k � 2,

ζ(k)
.= ζ(1) + ψ

([[
k

2

]])
− ψ

(
2

[[
k

2

]])
+

1 − (−)k

2(k − 1)
.

Indeed, with this new self-adjoint operator �(n̂), F (n̂), defined now as F(n̂) =
n̂−1 ∑∞

m=1 |m〉〈m| + �(n̂),4 leads to e+e− = I, e+ = e
†
− and [e−, e+] = 0 also in state |0〉.

The rationale here is the extension of the space of states F to include the extra vector ‘|−1〉’
(|− 1〉 .= e−|0〉 ≡ F(K3)K−|0〉): assuming K−|− �〉 = α−�|− �− 1〉, with α−� finite ∀� � 1

3 Over F, [[x]] can be realized in terms of multiboson operators Ak, A
†
k, N̂k

.= A
†
kAk [35], which close an algebra

h(1), with [Ak, n̂] = kAk . For n ≡ uk + v, where u
.= [[ n

k
]], and v

.= {n}k is the residue of n(mod k), one has

N̂k |n〉 = u|n〉. ψ(n̂) can be constructed resorting to the integral representation ψ(n̂) = ∫ ∞
0 dx e−x−exn̂

1−e−x − γ [34].
4 In Fock space operator

∑∞
m=1 |m〉〈m| is diagonal in the basis state |n〉 (∀n � 0) in which it has eigenvalue (1−δn,0).
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(notice that α0 = 0: the sufficient requirement is simply that K− applied to |0〉 generates a
vector lying outside F, but the coefficient is retained as zero, which however is to be multiplied
by the infinite value of the ψ function in F at its pole in −1 when the action of e− is considered),
then e−| − �〉 = 0|� − 1〉 , ∀� � 1. (This implies that in fact in equation (16) only the firt two
terms in the sum (k = 1, 2) could be retained with no loss of generality.) It is interesting to
observe that [e−, e+] = 0 also in any state |−�〉 with � � 2, whereas, in |−1〉, [e−, e+] = −1,
namely in the new state introduced the abelian algebra generated in F by e− , e+ expands to
h(1).

Ket |−1〉 has the correct normalization property 〈−1|−1〉 = 1, and is obviously orthogonal
to any vector in F: 〈n| − 1〉 = 0,∀n � 0, leading to the existence [36] of both a PV M and a
POM in F .

The construction of space H .= F ∪ |−1〉 can be consistently and rigorously carried over
resorting to the notion of ‘dilated extension Hilbert space’ [38–40], typically encountered
when one has to construct Hilbert spaces from certain given data. An efficient pattern of
such constructions is the lemma known as Kolmogorov’s dilation theorem for positive definite
kernels, and Sz-Nagy’s dilation theorem. The spectral theory for self-adjoint operators shows
indeed that one may generally restrict the attention to bounded operators by the use of Cayley
transform: if the operator is only symmetric, possibly with dense domain, but not self-adjoint,
then the Cayley transform reduces the problem to the analysis of partial isometries. But
if the index is nonzero (i.e. the co-dimension of the initial and the final space are unequal)
then there will not be self-adjoint extensions in the same, given, Hilbert space, but an induced
extension Hilbert space is needed for a complete understanding of spectral resolutions and
self-adjoint operator extensions of unbounded operators. This, due to the Gel’fand–Naimark
theorem [41], holds for Lie algebras only in the case they are simple, and requires passing to
the universal enveloping algebra to get the appropriate ∗-representation [42].

From the operational point of view, as in the present case co-dimension 1 is sufficient, a
plausible way to perform the extension is to recall that the supplementary series representation
of SU(1, 1), already mentioned, is spanned by a basis {|λ,µ〉}, corresponding to C2 = |λ|2 + 1

4 ,
where λ is pure imaginary: λ = iτ,− 1

2 < τ < 1
2 , such that

K3|λ,µ〉 = µ|λ,µ〉, µ = 0,±1,±2, . . . ,

K±|λ,µ〉 = (± (
1
2 − iλ

)
+ µ

) |λ,µ ± 1〉.
These expressions imply that for λ(τ) → 0, which leads just to C2 = 1

4 , such
representation is in correspondence (one-to-one, for µ � 0, up to a shift of the Cartan
operator eigenvalue µ ↔ n + 1

2 ) with the positive discrete series representation. Construction
(16) indeed guarantees that the two irreps can be made to correspond in a one-to-one way. Ket
|−1〉, necessary for the Hilbert space dilation extension, may be thus thought of as ‘borrowed’
from the supplementary series5.

We conclude conjecturing that the technical way in which the corresponding intertwining
operation can be realized, is but an analytic continuation from one representation to the
other that can be implemented by resorting to the q-deformed algebra suq(1, 1).6 The

5 In the supplementary series, for τ = 1
2 −, K±|λ, µ〉 = (µ ± 1)|λ, µ ± 1〉, K3|λ, µ〉 = µ|λ, µ〉, identifying

µ < 0 as the number of quanta removed from the vacuum. On the other hand, explicit calculation shows that
K3|−1〉 = − 1

2 |−1〉. The ‘extension’ state |−1〉 would thus be characterized in the deformed Fock space by n = −1,
if interpreted in the positive discrete series representation, as expected. Interpreting instead the new state as belonging
to supplementary series, such a state would correspond to ‘energy’ (µ + 1

2 ) equal to − 1
2 , which corresponds to

removing a quantum from the physical vacuum (which has ‘zero point energy’ equal to 1
2 ).

6 For a discussion of the role of deformed algebras in accounting for the Josephson junction energy spectrum
see [39].



L486 Letter to the Editor

latter is defined—in the universal enveloping algebra of SU(1, 1)—in terms of generators
{Q−,Q+,Q3} by [43]

[Q3,Q±] = ±Q±, [Q+,Q−] = −[[2Q3]]q,

where the q-deformation (q ∈ C) is as customary given by [[x]]q ≡ qx−q−x

q−q−1 . The q-deformed

Casimir invariant is C(q)

2 = Q+Q−−[[Q3]]q[[Q3 −1]]q (attention should be paid to the different
meaning of the symbol [[•]], which however is distinguished here by the subscript q).

In terms of the generators of SU(1, 1), suq(1, 1) has presentation [44–46],

Q3 = K3, Q− = K−g(K3), Q+ = g(K3)K+,

with7

g(K3) =
√

[[K3 − κ]]q[[K3 + κ − 1]]q
(K3 − κ)(K3 + κ − 1)

,

for C(q)

2 = [[κ]]q[[1 − κ]]q .
Note that for q = e4λ ≡ e4iτ and κ = 1

2 , C(q)

2 = 1
4 (1 − 2 sin2 τ)−2. Then for |λ| � 1

2 , up

to O(|λ|4), C(q)

2 ≈ 1
4 + |τ |2 ≡ 1

4 + |λ|2, as desired. The latter gives rise to the representation
Q3|κ, n〉 = (n+κ)|κ, n〉 (diagonal), Q+|κ, n〉 = ω

√
[[n + 1]]q[[n + 2κ]]q |κ, n+ 1〉,Q−|κ, n〉 =

ω−1
√

[[n]]q[[n + 2κ − 1]]q |κ, n − 1〉.
This construction also accounts for the contraction to h(1) in state |−1〉.
Physically we suggest the interpretation that whereas |0〉, even though representing a

physical ‘vacuum’, namely a state with no excitations (zero occupation number), yet is still in
the space of states of the system, |−1〉 does instead describe the true vacuum, i.e. ‘emptiness’
(no states of the system exist), out of whose quantum fluctuations Fock space states (in
particular |0〉) can be generated (notice, by e+, not by K+). Of course, in any realistic model
of a physical system whose Hamiltonian operator contains—such as, e.g., the Hamiltonian
describing systems with Josephson coupling—terms in ĉos φ or ŝin φ, the latter should in
general be replaced by their orthogonal projection from H onto F.

Applications of the scheme proposed are numerous, and some may indeed lead to
unexpected results. The motion of Wannier particles—electrons and holes or Cooper pairs—
constrained to ‘hop’ from a site to neighbouring sites on a lattice [47, 48], such as in the
Hubbard (and Bose–Hubbard) and related models; the still controversial phenomenon of
Bloch oscillations for strongly correlated exciton motion in crystals, where the oscillations
are found to be damped, in sharp contrast with the predictions of the semi-classical solid state
model, besides the already mentioned problem of the spectral and transport properties of ‘fully
quantum’ Josephson junctions, constitute just a sample. The approach here proposed may lead
to a more correct understanding of a number of questions: for example, the Bloch oscillations
damping might plausibly be due to the existence of the ‘sink’ state |−1〉.
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